
 

 
 
Supplementary Figure 1. Growth curves of IPTG-induced cultures of BL21(DE3) E. coli strains 
overexpressing sigma factor proteins of M. tuberculosis. 
E. coli BL21 (DE3) carrying empty pACYCDuet-1 expression vector (control) and vectors 
overexpressing each of 13 sigma factors of M. tuberculosis were grown to cell density of A600 = 0.5, 
and treated with 100 µm IPTG (arrow) to induce sigma factor protein expression. Cell density of the 
cultures was recorded every 30 minutes for two hours after induction. 
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Supplementary Figure 2. Western blot analysis of BL21(DE3) E. coli strains overexpressing 
the sigma factor proteins. 
E. coli BL21(DE3) carrying the pACYCDuet-1 plasmids expressing M. tuberculosis sigA through 
sigM were grown in LB broth at 37°C to mid-log phase, and 100 M IPTG was added.  After two 
hours, 1-ml culture aliquots were harvested, resuspended in electrophoresis sample buffer, and 
boiled for 10 min. Protein was separated by 10 % SDS-PAGE, transferred to PVDF membranes, and 
probed with anti-S tag antibody.  Detection was with two-hr incubation with horseradish peroxidase-
conjugated goat anti-mouse-IgG as secondary antibody.  The proteins were detected by 
chemiluminescence using Western Blotting Luminol Reagent. All sigma factors were detected by 
western blot analysis, except SigK.  However, the E. coli clone expressed SigK activity, since we 
found two SigK targets in the E. coli assay (Fig. 2), which were valid in M. tuberculosis (Fig. 4d and 
PMID 17064366).  Each panel (a–c) shows results for four sigma factors, as indicated at the top of 
each lane pair: U = uninduced sample; I = IPTG-induced sample. M = Marker, MW = Molecular 
weight.  
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Supplementary Figure 3. Hierarchy in the sigma factor network of M. tuberculosis.  
(a) Measures of network hierarchy for the sigma factor network for varying number of levels from 2 to 
6: node ambiguity (blue) equals the mean difference between the highest and the penultimate 
probabilities across levels for each node; corrected hierarchy score (orange) quantifies the 
enrichment in downward flow relative to expectation for a given hierarchical organization 1. High 
node ambiguity indicates an unambiguous assignment of nodes to levels, and high hierarchy score 
indicates optimal hierarchical organization. (b) The heatmap shows the probability that each node 
(row) belongs to one of the three levels of the hierarchy (Top, Middle and Bottom, corresponding to 
‘Number of levels’ equal to 3 in panel a). (c) Association of node hierarchy with clustering coefficient. 
The clustering coefficients of the sigma factor network were calculated after removing individual 
nodes in a given hierarchical level, and the resulting coefficients for nodes in each of the three 
hiearchical levels were plotted as boxplots, with the points representing individual values. The 
horizontal line corresponds to the clustering coefficient of the wild type (WT) network. 
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Supplementary Figure 4. Correlation matrix of community membership. 
A heatmap of the correlation matrix showing the results of the community analysis from an ensemble 
of 10,000 community detection runs performed on the sigma factor network in Fig. 3.  Each sigma 
factor (for example, sigA) is represented with a gene node (for example, sigA_G) and a protein node 
(for example, sigA_P).  The matrix elements show the probability that each pair of nodes is found to 
be in the same community.  White indicates the case when the two nodes (along the row and 
column) were always found together in the same community; black indicates the case when they 
were never found together.  The five-community partition shown in the heatmap has a modularity of 
0.46. The average modularity for random networks is 0.33, with a variance of 1.4E-3.  The resulting 
z-score of the sigma factor network is 96.24, indicating significantly high modularity (i.e., community 
structure) of the network. 
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Supplementary Figure 5. Coexpression analysis of sigma factors across conditions. 
Expression data were obtained from a total of 40 genome-wide data sets listed in the TB DataBase 
(www.tbdb.org).  For the present analysis, 103 conditions (>800 experiments) were selected in which 
at least one sigma factor was differentially expressed, with significance absolute z-score ≥2.  When 
treatment conditions were similar (for example, treatment with a particular stressor at multiple 
concentrations and/or for different time lengths), they were combined; for each group of similar 
conditions, the most significant expression change (highest absolute z-score) for each sigma factor 
was taken.  The selected values were abstracted for each sigma factor into +1 (up-regulation) and -1 
(down-regulation).  Absence of significant differential expression was converted into zero.  The 
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resulting heatmap shown in the figure represents hierarchical clustering (using Euclidean distance) 
of differential expression of sigma factors (columns) vs. experimental conditions (rows).  Blue and 
red indicate up- and down-regulation, respectively; white indicates no significant expression 
changes.  Only conditions in which ≥4 sigma factors were differentially regulated are shown 
(clustering results did not change when the list of conditions included also those with ≥3 differentially 
regulated sigma factors).  sigB, sigE, sigH, and sigL formed a distinct cluster, in agreement with 
reciprocal regulation among these factors [ELH –> B; BH –> L; L –> H; H –> E (Figure 2 and 
Supplementary Table 1)].  In addition, sigC, sigF, sigI, and sigM, which constitute the most robust 
community within the network, clustered together, along with sigJ and sigK, which are intermediate 
nodes bridging the four-node community and the larger network.  
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Supplementary Figure 6. An example of the network structure where a transcription factor 
regulates a sigma factor and its cognate anti-sigma factor. 
Transcription factors that regulate sigE and rseA (cognate anti-sigma).  Since sigE and rsaE are 
expressed from separate promoters, their joint regulation is not a consequence of bicistronic 
expression. 
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Supplementary Table 1. Previously reported direct sigma-sigma interactions 
Gene 
name 

Rv 
number ChIP data In vitro transcription 

assays 

SigA Rv2703 SigAa — 

SigB Rv2710 — SigB ref.2 but not ref.3 

SigC Rv2069 — — 

SigD Rv3414c SigDa,b,c SigD ref.4 

SigE Rv1221 — SigBd ref.3,5 

SigF Rv3286c SigFa 
SigB ref.3 
SigC ref.2 
SigFd ref.6 

SigG Rv0182c — — 

SigH Rv3223c SigEa, SigHa,b,c SigB ref.3,7 
SigEd ref.5 

SigI Rv1189 — — 

SigJ Rv3328c — SigId ref.8 

SigK Rv0445c — — 

SigL Rv0735 SigEa, SigLc SigB ref.3 
SigL ref.9 

SigM Rv3911 — SigM ref.10 

  
a Transcription Factor Over-Expression (TFOE) ChIP-Seq data 11 
b TFOE ChIP-Seq data, Mtb network portal 12 
c ChIP on chip data 13 
d Links that are also revealed by TFOE Microarray data 14,15. 
‘—‘ indicates ‘not done’ or ‘not significant’
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Supplementary Table 2. Published consensus binding motifs 
Sigma 
factor 

Promoter consensus sequence 
-35                                          -10 References  Previously 

reported targetsa 

SigA TTGCGA – [N18] – TANNNT ref.16 sigA 

SigB NGTGG – [N14-18] – NNGNNG ref.2 sigB 

SigC SSSAAT – [N16-20] – CGTSSS ref.17 — 

SigD GTAACGct – – – AT-rich region 
AGAAAG – [N16-20] – CGTTAA refs.4,18 sigD 

SigE gGGAACYa – [N15-16] – cGTT ref.19 sigBb 

SigF GGWWT – [N16-17] – GGGTAY ref.13 sigB, sigC, sigF 

SigG GCGNGT – [N15-18] – CGANCA ref.20 — 

SigH gGGAAYA – [N16-17] – cGTT ref.5 sigBb, sigEb, sigH 

SigI unknown — — 

SigJ GTCACA – [N16] – CGTCCT ref.8 sigIb 

SigK CCATCC – [N15] – CCGAAT ref.21 — 

SigL TGAACC – [N16] – CGTgtc ref.9 sigB, sigE, sigLb 

SigM GGAAC – [N16-18] – CGTCR 
GGGAACC – [N17] – gtCcgA  refs.22,10 sigMb 

 
a List of direct sigma factor targets as in Supplementary Table 1. 
b Sigma factor targets identified by MAST using the consensus motifs in the second column. 
No consensus binding motif was found for any of the 11 sigma factors analyzed by ChIP-Seq 11.
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Supplementary Table 3. Known anti-sigma factors 
Anti-sigma 
(rv no.) 

Cognate 
sigma 

Sigma-anti-sigma 
coregulation  References 

RsdA (rv3413c) SigD likely (6 bp 
intergenic) refs.23,24 

RseA (rv1222) SigE no refs.25,26 

UsfX (rv3287c) SigF* yes refs.6,27,28 

RshA (rv3221A) SigH yes refs.29-31 

RskA (rv0444c) SigK yes refs.32,33 

RslA (rv0736) SigL yes refs.3,9,34 

RsmA (rv3912) SigM likely (16 bp 
intergenic) ref.35 

  
bp = base pairs 
* Anti-anti-sigma factors are known only for SigF: RsfA (rv1365c), RsfB (rv3687c) (PMID: 12354223).
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Supplementary Table 4. Primers used for expression from donor plasmid (pACYCDuet-1) 
Primer code Primer sequence (5’—3’) 

SigA_fwd AAATTAGATCTTGTGGCAGCGACCAAAGCAAG  

SigA_rev AAATTGGTACCGTCCAGGTAGTCGCGCAGGA  

SigB_fwd AAATTAGATCTTATGGCCGATGCACCCACAAG  

SigB_rev AAATTGGTACCGCTGGCGTACGACCGCAGCC  

SigC_fwd AAATTAGATCTTATGACCGCGACGGCAGCGA  

SigC_rev AAATTGGTACCGCCGGTGAGGTCGTCGGGCT  

SigD_fwd AAATTGGATCCTATGGTCGATCCGGGAGTTAG   

SigD_rev AAATTGGTACCCGCATAGTCACCTGCCGCAA 

SigE_fwd AAATTGGATCCTATGGAACTCCTCGGCGGACC  

SigE_rev AAATTGGTACCGCGAACTGGGTTGACGTGAA  

SigF_fwd AAATTAGATCTTGTGACGGCGCGCGCTGCCGG  

SigF_rev TTCTCCAACTGATCCCGTAGCC   

SigG_fwd AAATTAGATCTTATGCGCACATCGCCGATGCC  

SigG_rev AAATTCTCGAGCAGCGAATCGGGCAGGCCGA  

SigH_fwd AAATTAGATCTTATGGCCGACATCGATGGTGT 

SigH_rev AAATTCTCGAGTGACGACACCCCCTCGTGCG  

SigI_fwd AAATTCAATTGTATGTCGCAACACGACCCGGT   

SigI_rev AAATTGGTACCACCGCCGCCGAGTTCGGCCC 

SigJ_fwd AAATTAGATCTTATGGAGGTTTCCGAATTCGA  

SigJ_rev AAATTGGTACCATTCCGGTGATGCCTGCCGC  

SigK_fwd AAATTGGATCCTATGACCGGACCGCCACGGCT  

SigK_rev AAATTGGTACCTGACACGTCCAGGCAGTTGC  

SigL_fwd AAATTAGATCTTGTGGCTCGTGTGTCGGGCGC  

SigL_rev AAATTGGTACCTCGAGTAACTCCCAGTTCCT  

SigM_fwd AAATTAGATCTTATGCCGCCACCGATTGGTTA  

SigM_rev AAATTGGTACCTGCCCGGTGGCAATAGCCAG  
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Supplementary Table 5. Primers used for expression from target plasmid (pJEM13) 
Primer code Primer sequence (5’—3’) 

SigB_fwd1 ATTGGATCCCCGTCTGTTGGCCGGCGTTC 

SigB_rev1 ATTGGTACCGCTGTCAACCCGGCTTGTGG  

SigC_fwd1 ATTGGATCCTTGGGCCACCGGGGAGATCG  

SigC_rev1 ATTGGTACCGGCGAGTGCGGTAACGGCCT 

SigD_fwd1 ATTGGATCCTCCCCGCTCGTGGCGGACCG  

SigD_rev1 ATTGGTACCGTCTCCTGCCACGGCCTCCG  

SigE_fwd1 ATTGGATCCCACCGCCGGTGTTACCGCCC  

SigE_rev1 ATTGGTACCATGAGACATGCTGGTCGGAC  

SigF_fwd1 ATTGGATCCACCTATCGTGACCCCGTCGA  

SigF_rev1 ATTGGTACCGACACCGCGTTGGCGCCCCT 

SigG_fwd1 ATTGGATCCGGTCGGTGTTGTAAGCCTGG  

SigG_rev1 ATTGGTACCCACCCGGACTGAACGGAATT 

SigH_fwd1 ATTGGATCCGACGATCGGCAGTGCCTGGC 

SigH_rev1 ATTGGTACCAGGCTGCAGACCCGCCGAAC 

SigI_fwd1 ATTAGTACTCCGTGGGCGCCCGAGTCCGG  

SigI_rev1 ATTGGATCCTTCCGATGCGCCCGCCAGGCCG  

SigJ_fwd1 ATTGGATCCGAACAATGGCAGGCCGGTGA  

SigJ_rev1 ATTGGTACCCGACATGAGATGCTGTCGCA  

SigK_fwd1 ATTGGATCCGTCGGTATCACCTTCGAAGC  

SigK_rev1 TTGGTACCCAACAGGGCGTCCAGGTCGC  

SigL_fwd1 ATTGCGCCCTGAGCGACGCCGAC  

SigL_rev1 ATTCATCAACGCGGCTTCAGCGG   

SigM_fwd1 ATTGGATCCTTCGGCGCCGCCCGGCAGCG  

SigM_rev1 ATTGGTACCGCCCCCGAAACCCACGGCCG  

SigEP1_fwd AAATTGGATCCATTGCTCATATATGGCCCAT 

SigEP2_fwd AAATTGGATCCCCTCGGCGGACCCCGGGTTG 
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Supplementary Table 6. Primers used for expression from ATC-inducible plasmid (pGMEH-
10M1) 
Primer code Primer sequence (5’—3’) 

clo-sigB-attB2 GGGGACAGCTTTCTTGTACAAAGTGGAAGGAGGTATACATATGGCCGATGCAC
CCACAAG 

clo-sigB-attB3 GGGGACAACTTTGTATAATAAAGTTGGGCTCAGGATGTCCAGCTTCAG 
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Supplementary Table 7. List of qPCR primers and molecular beacons (MB) 
Gene qPCR primers (5’-3’) 

ideR 
Fwd: AACGCACGAGTAACCGTCGAAAC 
Rev: TCAGACTTTCTCGACCTTGACCGC  
MB: CCCCGGCGGCGGCGTGACCATCGTCATCCCGGGG 

mpt70 
Fwd: CTCGAACAATCCGGAGTTGACA 
Rev: AACAGCGGTCAGTACACGGTGT 
MB: GCAGCCAGCTCAATCCGCAAGTAAACCTGGGCTGC 

sigD 
Fwd: ATTCCTGGCGTTTCTGTACGGCAT 
Rev: TCTCAAGCAATTCGTTCATCCGGG 
MB: CGCGTGTATCCCGCCGAAACGCTTCCTGCACGCG 

sigK 
Fwd: AATTCTACGACCACACCAAGTCGC 
Rev: GTTCCGCCACACCTCAAGATAGAT 
MB: ACGGGGGTATGGACTGGTGATGCGGGTCCCCGT 

sigG 
Fwd: AAATTCCGTTCAGTCCGGGTGGTA 
Rev: AGCACACTCACGTCAATGAGCCTA 
MB: ACCCGCCGGTGAGAGTGTCGGAGACTCGCGGGT 

sigL 
Fwd: GAATTGCCGAAGGAACGGTGAAGTC 
Rev: AACTCCCAGTTCCTGCAGAGTGA 
MB: ACGGCGTGAAGTCGCGATTGCACTACGCCCGCCGT 

sigF 
Fwd: TCTTGACCAGATCGAGAATCGGGA 
Rev: AGTCGAAGAACCTGAGCACCAAGA 
MB: CGCGTGGAACGGTCTTGGTGCTCAGGTCACGCG 

sigC 
Fwd: GCGTTTATCAAAGCCACCCAGCAA 
Rev: ATCGCTCGTAGGAATGTCTCTTGG 
MB: ACCCGCCAAAGCCACCCAGCAAGACGTGTGCGGGT 

sigH 
Fwd: TGTCGGTCGCGGCCTCTACAT 
Rev: GCTTCTCACCCAACAGGCTCGTC 
MB: AGGGCCGAGGGGAGTCTGGTGTCAACGGGCCCT 

16s rRNA 
Fwd: ATGACGGCCTTCGGGTTGTAA 
Rev: CGGCTGCTGGCACGTAGTTG 
MB: CCCCGCCGACGAAGGTCCGGGTTCTCGCGGGG 

lacZ 
Fwd: TTGTTGCCATTGCTACAGGCATCG 
Rev: TGTAACTCGCCTTGATCGTTGGGA 
MB: ACCCGGGGTGTCACGCTCGTCGTTTGGCCGGGT 
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